| 1. |
Solve the equation please answer |
|
Answer» Answer: x = a² and y = b² Step-by-step explanation: (b²/a)x + (a²/b)y = AB(a+b) × (1) (b²)x + (a²)y = 2a²b² × (1/a) -------------------------------------------------------------- ⇒ (b²/a)x + (a²/b)y = ab(a+b) (-) (b²/a)x + (a)y = 2ab² --------------------------------------------- ⇒ (a²/b - a)y = ab[a + b - 2B] ⇒ (a² - ab)y = ab²[a-b] ⇒ a(a-b)y = a×b²×[a-b] ⇒ y = b² substitute the value of y in equation 2 ⇒ b²x + a²(b²) = 2a²b² ⇒ b²x = a²b² ⇒ x = a² -------------------------------------------------------------------------------------------------------- VERIFICATION
R.H.S = ab(a+b) L.H.S = (b²/a)x + (a²/b)y substitute the VALUES of x and y ⇒ L.H.S = (b²/a)(a²) + (a²/b)(b²) = b²a + a²b = ab(a+b) = R.H.S ∵ L.H.S = R.H.S ∴ x = a² and y = b²
R.H.S = 2a²b² L.H.S = (b²)x + (a²)y substitute the values of x and y ⇒ L.H.S = (b²)(a²) + (a²)(b²) = 2a²b² = R.H.S ∵ L.H.S = R.H.S ∴ x = a² and y = b² ------------------------------------------------------------------------------------------------------- PLEASE MAKE MY ANSWER AS BRAINLIEST
|
|