1.

Solve the equation `|z|=z+1+2idot`

Answer» The given equation is `|z| = z + 1 + 2i " " ...(i) `
Let `z = x + iy`
From Eq. (i). |x + iy| = x + iy + 1 + 2i`
`rArr sqrt(x^(2)+Y^(2) = x + iy + 1 + 2i)" " [:. |z| + sqrt (x^(2)+Y^(2))]`
`rArr sqrt(x^(2)+Y^(2)) = (x + 1) + i (y + 2)`
On squaring both sides, we get
`x^(2) + y^(2) = (x+ 1)^(2) + i^(2) (y +2)^(2) + 2i(x + 1)(y +2)`
`rArr x^(2) + y^(2) = x^(2) +2x + 1- y ^(2) - 4y -4 + 2i(x + 1)(y +2)`
On comparing real and imaginary parts ,
`x^(2) + y^(2) = x^(2) +2x + 1- y ^(2) - 4y -4`
i. e., `2y^(2) = 2x - 4y - 3` ....(ii)
and `2(x + 1)(y + 2) 0`
`(x + 1) = 0 or (y + 2) = 0`
`rArr x = - 1 or y = - 2`
For ` x = - 1`
we get, `2y^(2) = -2- 4 y 3`
`2y^(2) = + 4 + 5 = 0 [using Eq. (ii)]`
`rArr y = (- 4pmsqrt(16 - 2 xx 4 xx 5))/(4)`
`rArr y = (- 4pm(sqrt(-24)))/(4)notinR`
Now, for y = - 2,
Then, `2(-2)^(2) = 2x - 4 (-2) -3 [using Eq. (ii)]`
`8 = 2x + 8 - 3`
`2x = 3 rArr x = 3//2`
`z = x + iy = 3/2 - 2i`


Discussion

No Comment Found