1.

Solve the following for x, where |x| is modulus function, [x] is the greatest integer function, {x} is a fractional part function.|x2 – x – 6| = x + 2

Answer»

|x2 – x – 6| = x + 2 …..(i) 

R.H.S. must be non-negative 

∴ x ≥ -2 …..(ii) 

|(x – 3) (x + 2)| = x + 2 

∴ (x + 2) |x – 3| = x + 2 as x + 2 ≥ 0 

∴ |x – 3| = 1 if x ≠ -2 

∴ x – 3 = ±1 

∴ x = 4 or 2 

∴ x = -2 also satisfies the equation 

∴ Solution set = {-2, 2, 4}



Discussion

No Comment Found