InterviewSolution
Saved Bookmarks
| 1. |
Solve the inequation `2^(1/(cos^2 x))sqrt(y^2-y+1/2) |
|
Answer» `2^(1/cos^(2)x) sqrt(y^(2)-y+1//2) le1`…………(i) `2^(1/(cosp^(2)x)) sqrt((y-1/2)^(2)+(1/2)^(2)) le1` Miniumum value of `2^((1)/(cos^(2)x)=2` Minimum value of `sqrt((y-1/2)^(2)+(1/2)^(2))=1/2` `rArr` Minimum value of `2^(1/(cos^(2)x)) sqrt(y^(2)-y+1/2)` is 1 `rArr` (i) is possible when `2^(1/(cos^(2)x)) sqrt((y-1/2)^(2)+(1/2)^(2))=1` `rArr cos^(2)x=1` and `y=1/2 rArr cosx = +1 rArr x=npi`, where `n in I`, Hence, `x=npi, n in I` and `y=1//2`. |
|