1.

Solve -x2 + 3x – 2 ≥ 0

Answer»

-x2 + 3x – 2 ≥ 0 ⇒ x2 – 3x + 2 ≤ 0 

(x – 1) (x – 2) ≤ 0 

[(x – 1) (x – 2) = 0 ⇒ x = 1 or 2. Here α = 1 and β = 2. Note that α < β] 

So for the inequality (x – 1) (x – 2) ≤ 2 

x lies between 1 and 2 

(i.e.) x ≥ 1 and x ≤ 2 or x ∈ [1, 2] or 1 ≤ x ≤ 2



Discussion

No Comment Found