InterviewSolution
Saved Bookmarks
| 1. |
Solve `:+z^2+|z|=0`. |
|
Answer» `z^(2) + |z|=0` `rArr x^(2) -y^(2) + i(2xy) + sqrt(x^(2) + y^(2)) = 0` `rArr x^(2) - y^(2) + sqrt(x^(2) + y^(2)) = 0" "(1)` and ` 2xy = 0" "(2)` From (2), let x= 0 . From (1), `-y^(2) + sqrt(y^(2)) = 0` `rArr -|y|^(2) + |y| = 0` `rArr |y| = 0 or 1` `rArr y = 0 or y = pm 1` From (2), if y = 0 , then from (1), `x^(2)+ sqrt(x^(2)) = 0` `rArr |x|^(2) +|x|=0` `rArr x = 0` Hence, complex numbers are `0 + i0, 0+i,0-i` |
|