1.

State and prove Darboux theorem.

Answer» <p>Defineg(x)=f(x)−αxg(x)=f(x)−αx.</p><p> Thenggis continuous and because[a,b][a,b]is compactggattains its minimum on[a,b][a,b]. </p><p>Letxm∈[a,b]xm∈[a,b]be such thatg(xm)≤g(x)g(xm)≤g(x)for allx∈[a,b]x∈[a,b].</p><p> Ifxm∈(a,b)xm∈(a,b)theng′(xm)=0=f′(xm)−αg′(xm)=0=f′(xm)−αwhich shows the claim.</p><p>Ifxm=axm=atheng′(xm)=g′(a)&lt;0g′(xm)=g′(a)&lt;0. Becauseggis continuous andg′(a)&lt;0g′(a)&lt;0there existsδ&gt;0δ&gt;0such that ifx∈(a,a+δ)x∈(a,a+δ)theng(x)&lt;g(a)=g(xm)g(x)&lt;g(a)=g(xm). </p><p>But this is a contradiction becausexmxmis the minimum.</p><p> Ifxm=bxm=bthen again there isδ&gt;0δ&gt;0such that ifx∈(b−δ,b)x∈(b−δ,b)theng(x)&lt;g(b)=g(xm)g(x)&lt;g(b)=g(xm)becauseg</p>


Discussion

No Comment Found