1.

Sum of all the digits of a two digit number is 9. When we exchange the digits , it isfound that the resulting new number is greater than the original number by 27. What is the two digit number?​

Answer» <html><body><p><strong>Answer:</strong></p><p>36</p><p><strong>Step-by-step <a href="https://interviewquestions.tuteehub.com/tag/explanation-455162" style="font-weight:bold;" target="_blank" title="Click to know more about EXPLANATION">EXPLANATION</a>:</strong></p><p><a href="https://interviewquestions.tuteehub.com/tag/let-11597" style="font-weight:bold;" target="_blank" title="Click to know more about LET">LET</a> the <a href="https://interviewquestions.tuteehub.com/tag/digits-953961" style="font-weight:bold;" target="_blank" title="Click to know more about DIGITS">DIGITS</a> be <a href="https://interviewquestions.tuteehub.com/tag/x-746616" style="font-weight:bold;" target="_blank" title="Click to know more about X">X</a> and y.</p><p></p><p>Then, x+y = 9</p><p></p><p>the original number is 10x+y.</p><p></p><p>On reversing, we get the <a href="https://interviewquestions.tuteehub.com/tag/new-1114486" style="font-weight:bold;" target="_blank" title="Click to know more about NEW">NEW</a> number as 10y+x</p><p></p><p>The new number is greater than the old number by 27, i.e.</p><p></p><p>(10y+x) - (10x+y) = 27</p><p></p><p>or 9y-9x = 27, or y-x = 3</p><p></p><p>and x+y = 9</p><p></p><p>Adding the two equations, we get 2y = 12 or y = 6.</p><p></p><p>Thus, x = 3.</p><p></p><p>Therefore, the original number is 36.</p><p></p></body></html>


Discussion

No Comment Found