1.

Suppose `A` and `B` are two non singular matrices such that `B != I, A^6 = I` and `AB^2 = BA`. Find the least value of `k` for `B^k = 1`A. `31`B. `32`C. `64`D. `63`

Answer» Correct Answer - D
`(d)` `A^(6)=IimpliesBA^(6)=B`
`implies(BA)A^(5)=B`
`impliesAB^(2)A^(5)=B`
`impliesAB(AB^(2))A^(4)=B`
`impliesA^(2)B^(4)A^(4)=B`
Proceeding like this we get
`A^(6)B^(64)=BimpliesB^(64)=B`
`impliesB^(63)=I`
`impliesk=63`


Discussion

No Comment Found

Related InterviewSolutions