

InterviewSolution
Saved Bookmarks
1. |
Suppose `A` and `B` are two non singular matrices such that `B != I, A^6 = I` and `AB^2 = BA`. Find the least value of `k` for `B^k = 1`A. `31`B. `32`C. `64`D. `63` |
Answer» Correct Answer - D `(d)` `A^(6)=IimpliesBA^(6)=B` `implies(BA)A^(5)=B` `impliesAB^(2)A^(5)=B` `impliesAB(AB^(2))A^(4)=B` `impliesA^(2)B^(4)A^(4)=B` Proceeding like this we get `A^(6)B^(64)=BimpliesB^(64)=B` `impliesB^(63)=I` `impliesk=63` |
|