1.

`tan^(-1)""(x)/(sqrt(a^(2)-x^(2))),|x|lt a`

Answer» `tan^(-1)""(x)/(sqrt(a^(2)-x^(2)))`
`=tan^(-1)""(a sin theta)/(sqrt(a^(2)-a^(2) sin^(2)theta))`
`=tan^(-1)""(a sin theta)/(sqrt(a^(2)(1-sin^(2)theta)))" " Let x=a sin theta implies sin theta =(x)/(a)implies theta=sin^(-1)""((x)/(a))`
`=tan^(-1)""(a sin theta)/(sqrt(a^(2)cos^(2)theta))`
`=tan^(-1)""(a sin theta)/(a cos theta)=tan^(-1)(tan theta)`
`=theta=sin^(-1)""(x)/(a)`


Discussion

No Comment Found