1.

Test whether the following relations R1, R2 and R3 are (i) reflexive (ii) symmetric and (iii) transitive :R2 on Z defined by (a, b) ϵ R2⇔ |a – b| ≤ 5

Answer»

Here, R1, R2, R3, and R4 are the binary relations.

So, recall that for any binary relation R on set A. We have,

R is reflexive if for all x ∈ A, xRx.

R is symmetric if for all x, y ∈ A, if xRy, then yRx.

R is transitive if for all x, y, z ∈ A, if xRy and yRz, then xRz.

So, using these results let us start determining given relations.

We have

R2 on Z defined by (a, b) ∈ R2⇔ |a – b| ≤ 5

Check for Reflexivity:

∀ a ∈ Z,

(a, a) ∈ R2 needs to be proved for reflexivity.

If (a, b) ∈ R2

Then, |a – b| ≤ 5 …(1)

So, for (a, a) ∈ R1

Replace b by a in equation (1), we get

|a – a| ≤ 5

⇒ 0 ≤ 5

⇒ (a, a) ∈ R2

So, ∀ a ∈ Z, then (a, a) ∈ R2

 R2 is reflexive.

Check for Symmetry:

∀ a, b ∈ Z

If (a, b) ∈ R2

We have, |a – b| ≤ 5 …(2)

Replace a by b & b by a in equation (2), we get

|b – a| ≤ 5

Since, the value is in mod, |b – a| = |a – b|

⇒ The statement |b – a| ≤ 5 is true.

⇒ (b, a) ∈ R2

So, if (a, b) ∈ R2, then (b, a) ∈ R2

∀ a, b ∈ Q0

 R1 is symmetric.

Check for Transitivity:

∀ a, b, c ∈ Z

If (a, b) ∈ R2 and (b, c) ∈ R2

⇒ |a – b| ≤ 5 and |b – c| ≤ 5

Since, inequalities cannot be added or subtract. We need to take example to check for,

|a – c| ≤ 5

Take values a = 18, b = 14 and c = 10

Check: |a – b| ≤ 5

⇒ |18 – 14| ≤ 5

⇒ |4| ≤ 5 is true.

Check: |b – c| ≤ 5

⇒ |14 – 10| ≤ 5

⇒ |4| ≤ 5

Check: |a – c| ≤ 5

⇒ |18 – 10| ≤ 5

⇒ |8| ≤ 5 is not true.

⇒ (a, c) ∉ R2

So, if (a, b) ∈ R2 and (b, c) ∈ R2, then (a, c) ∉ R1

∀ a, b, c ∈ Z

 R2 is not transitive.



Discussion

No Comment Found

Related InterviewSolutions