1.

The 7th term of an Ap is -1 and the 16th term is 17.FIND THE Nth TERM

Answer»

AnsWer :

- 13 , - 11 , - 9.....

SolutioN :

LET,

  • FIRST term be a
  • Common difference be d
  • an = a + ( N - 1 ) d.

Case 1

  • The 7th term of an Ap is - 1.

\tt \dagger \:  \:  \:  \:  \: a_7 = - 1.

Case 2.

\tt \dagger \:  \:  \:  \:  \: a_{16} = 17

Let's Find the nth terms.

\tt \dagger \:  \:  \:  \:  \:   \boxed{\tt a_n = a + (n - 1)d}

Taking Case 1.

\tt   : \implies \tt a_7 =  - 1.

\tt   : \implies a + (7 - 1)d =  - 1.

\tt   : \implies a + 6d =  - 1. \:  \:  \:  \:  \:  - (1)

Taking case 2.

\tt   : \implies a +(16 - 1)d =  17.

\tt   : \implies a + 15d =  17. \:  \:  \:  \:  \:  - (2)

Subtraction, Equation ( 1 ) and ( 2 )

\tt   a + 15d =  17.

\tt   a + 6d =  - 1.

________________________________

\tt   : \implies9d =  18.

\tt   : \implies d =  \dfrac{18}{9}

\tt   : \implies d =  2.

Now, PUTTING the value of d = 2. ( in Case 1 )

\tt   : \implies a + 6d =  - 1.

\tt   : \implies a + 6(2)=  - 1.

\tt   : \implies a +12 =  - 1.

\tt   : \implies a  =  - 1 - 12.

\tt   : \implies a  =  - 13.

\rule{200}3

Let find nth terms.

→ an = a + ( n - 1 )d.

  • n = 1 , 2 , 3...
  • a = - 13.
  • d = 2.

\tt \dagger \:  \:  \:  \:  \: a_1 = a + (n - 1)d

\tt  : \implies a_1 =  - 13 + (1- 1)2

\tt  : \implies a_1 =  - 13 +0

\tt  : \implies a_1 =  - 13.

\rule{200}3

\tt  : \implies a_2 =  - 13 +(2 - 1)2

\tt  : \implies a_2 =  - 13 +2

\tt  : \implies a_2 =  - 11.

\rule{200}3

\tt  : \implies a_3 =  - 13 +(3- 1)2

\tt  : \implies a_3=  - 13 +4

\tt  : \implies a_3 =  -9.

Therefore, the value of nth of AP , - 13 , - 11 , - 9 .... so on.



Discussion

No Comment Found

Related InterviewSolutions