

InterviewSolution
Saved Bookmarks
1. |
The algebraically second largest term in the expansion of `(3-2x)^(15)` at `x=(4)/(3)`.A. `5`B. `7`C. `9`D. `11` |
Answer» Correct Answer - B `(b)` `(3-2x)^(15)` at `x=(4)/(3)` For greatest term, `r le (16|2x|)/(3+|2x|)=(16xx2xx(4)/(3))/(3+(8)/(3))=(128)/(17)` `:.r=7` `:.t_(r+1)=t_(8)=^(15)C_(7)3^(8)(-2x)^(7)=-^(15)C_(7)3^(8)((8)/(3))^(7)` greates term `:.t_(7)` and `t_(9)` are positive term `t_(7)=^(13)C_(6)3^(9)(-2x)^(6)=^(15)C_(6)3^(9)(8//3)^(6)=^(15) C_(6)8^(6)*3^(3)` and `t_(9)=^(15)C_(8)3^(7)(-2x)^(8)=^(15)C_(8)3^(7)(8//3)^(8)=^(15) C_(8)8^(8)*3^(-1)` `:.t_(9)-t_(7)=(15!)/(8!7!)(8^(8))/(3)-(15!)/(8!6!)8^(6)*3^(3)=(15!)/(9!6!)(8^(6))/(3)[(64)/(7)-(3^(4))/(9)] gt 0` `:.t_(7) lt t_(9)` `t_(11)=^(15)C_(10)(8^(10))/(3^(5))` `:.t_(7)-t_(11) gt 0` `:.t_(7) gt t_(11)` Thus `t_(9) gt t_(7) gt t_(11)` Hence `t_(7)` is the second largest term. |
|