1.

The angle of a triangle are 3x,(2x+20)°and (5x-40)°. Find the angle hence show that the triangle is an equilateral triangle

Answer»

_________________________

\:  \\  \:

A N S W E R :

\:

  • The angles measures 60°

\:

S O L U T I O N :

\:

~Its given that the angle of a triangle are 3x, (2x + 20)° and (5x - 40)°. We have to find the angles and show that the triangle is an equilateral triangle. We also know that sum of an equilateral triangle is 180°.

\:

Using angle sum PROPERTY :

\:

\tt→{3x + 2x + 20 + 5x  - 40 = 180}

\:

\tt→{3x + 2x + 5x + 20 - 40 = 180}

\:

\tt→{10x + 20 - 40 = 180}

\:

\tt→{10x - 20 = 180}

\:

\tt→{10x = 180 + 20}

\:

\tt→{10x = 200}

\:

\tt→{x =  \cancel \dfrac{200}{10} }

\:

\tt→{x = 20}

\:

Therefore, the value of x is 60°.

\:

_______________________________________

\:

Substituting all the VALUES :

\:

\tt→{3x  = 3 \times 20 = 60} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \tt→{2x + 20 = 2 \times 20 + 20 = 40 + 20 = 60} \\  \\  \tt→{5x - 40 = 5 \times 20 - 40 = 100  - 40 = 60}

\:

Therefore, all the angles of the triangle add up to 180° = equilateral triangle.

\:  \\  \:

_________________________



Discussion

No Comment Found

Related InterviewSolutions