| 1. |
. The angles of a triangle are (10x - 5), (15x - 10) and (25x - 5). Find their degree measure. |
|
Answer» : 35° , 50° , 95° Solution : Here ,The GIVEN angles of a triangle are ; (10x - 5°) , (15x - 10°) , (25x - 5°) .Let's take ∠1 = 10x - 5° ∠2 = 15x - 10°∠3 = 25x - 5° ALSO ,We know that , according to ANGLE sum property of a triangle , the sum of all the three interior angles of a triangle is 180° .Thus ,=> ∠1 + ∠2 + ∠3 = 180° => (10x - 5°) + (15x - 10°) + (25x - 5°) = 180°=> 50X - 20° = 180°=> 50x = 180° + 20°=> 50x = 200°=> x = 200°/50=> x = 4° Thus , ∠1 = 10x - 5° = 10•4° - 5° = 40° - 5 = 35°∠2 = 15x - 10° = 15•4° - 10° = 60° - 10° = 50°∠3 = 25x - 5° = 25•4° - 5° = 100° - 5° = 95° Hence ,The angles of triangle in degrees are ; 35° , 50° and 95° . |
|