InterviewSolution
Saved Bookmarks
| 1. |
The area bounded by the curve `y=x(1-log_(e)x)` and x-axis isA. `(e^(2))/(4)`B. `(e^(2))/(2)`C. `(e^(2)-e)/(2)`D. `(e^(2)-e)/(4)` |
|
Answer» Correct Answer - A `y=x(1-log_(e)x)` It meets x-axis, if `x(1-loge_(e)x)=0` `therefore" "x=0 or x=e` `therefore" Required area "=overset(e)underset(0)intx(1-log_(e)x)dx` `=overset(e)underset(0)intxdx -overset(e)underset(0)intx log x dx` `=[(x^(2))/(2)]_(0)^(e)-[(x^(2))/(2)log_(e)x]_(0)^(e)+overset(e)underset(0)int(x)/(2)dx` `=(e^(2))/(2)-[(e^(2))/(2)-underset(xrarr0)lim(x^(2))/(2)log_(e)x]+(e^(2))/(4)` `=(e^(2))/(4)` |
|