Saved Bookmarks
| 1. |
The atomic mass of ""_(7)N^(15) is 15.000108 a.m.u. and that of ""_(8)O^(16) is 15.994915 a.m.u. If mass of proton is 1-007825 a.m.u., then the minimum energy provided to remove the least tightly bound proton is : |
|
Answer» 0.013018MeV `""_(8)O^(16)-""_(7)N^(15)=""_(1)P^(1)` =MASS of ONE proton in nucleus `(15-994915-15.000108)" a.m.u.=mass of "_(1)p^(1)` Mass of one proton in nculeus =0.994807 a.m.u. But mass of one proton outside nucleus =1.007825 a.m.u. Mass DEFECT =(1.007825-0.994807) a.m.u. =0.13018 a.m.u. `=0.013018 xx 931MeV=12.13MeV` =ENERGY required to remove proton. |
|