1.

The atomic mass of ""_(7)N^(15) is 15.000108 a.m.u. and that of ""_(8)O^(16) is 15.994915 a.m.u. If mass of proton is 1-007825 a.m.u., then the minimum energy provided to remove the least tightly bound proton is :

Answer»

0.013018MeV
12.13MeV
13.018MeV
12.13MeV

Solution :Here `""_(8)O^(16)=""_(7)N^(15)+""_(1)P^(1)`
`""_(8)O^(16)-""_(7)N^(15)=""_(1)P^(1)` =MASS of ONE proton in nucleus
`(15-994915-15.000108)" a.m.u.=mass of "_(1)p^(1)`
Mass of one proton in nculeus =0.994807 a.m.u.
But mass of one proton outside nucleus =1.007825 a.m.u.
Mass DEFECT =(1.007825-0.994807) a.m.u.
=0.13018 a.m.u.
`=0.013018 xx 931MeV=12.13MeV`
=ENERGY required to remove proton.


Discussion

No Comment Found

Related InterviewSolutions