InterviewSolution
Saved Bookmarks
| 1. |
The complex number `sin(x)+icos(2x)` and `cos(x)-isin(2x)` are conjugate to each other forA. `x = npi, n in Z`B. `x= 0`C. `x = (n+1//2)pi, n in Z`D. no value of x |
|
Answer» Correct Answer - D Let `z_(1) = sin x + i cos 2x = cos x - i sin 2x` Then `barz_(1) = z_(2)` `rArr sin x - i cos 2x = cos x - i isn 2x ` `rArr sin x = cos x and cos 2x = sin 2x` `rArr tan x = 1 and tan 2x = 1` `rArr x = (pi)/(4) and x = (pi)/(8)` This is not possible. Hence, there is no value of x. |
|