InterviewSolution
Saved Bookmarks
| 1. |
The diameters of top and bottom portions of a milk can are 56 cm and 14 cm respectively. The height of the can is 72 cm . Find the (a) area of metal sheet required to make the can (without lid). (b) volume of milk which the container can hold. |
|
Answer» The milk can is in the shape of a frustum with R = 28 cm, r = 7 cm and h = 72 cm. (a) Area of metal sheet required =Curved surface area + Area of bottom base `= pi l (R +r)+pi r^(2)` Now, `l=sqrt((R-r^(2))+h^(2))=sqrt((28-7)^(2)+72^(2))=sqrt(21^(2)+72^(2))=sqrt(9(7^(2)+24^(2)))` ` =3 sqrt(49+576)=3xxsqrt(625)=3xx25=75 cm ` ` :. "Area of metal sheet"=(22)/(7)xx75(28+7)+(22)/(7)xx 7^(2)=22 xx 75 xx 5 +22 xx 7` `=22(375+7)` `=22(382)=8404 cm^(2)`. (b) Ammount of milk which the container can hold `=(1)/(3) pi h(R^(2)+Rr+r^(2))` `=(1)/(3)xx (22)/(7) xx 72 (28^(2)+7 xx 28 +7^(2))` `=(22)/(7) xx 24 (7xx 4 xx28+7xx 28+7xx 7)` `=(22)/(7) xx 24xx 7(112+28+7)` ` =22 xx 24 xx (147)=77616 cm^(3)`. |
|