InterviewSolution
Saved Bookmarks
| 1. |
The differential equation `(dy)/(dx)+(y^(2))/(x^(2))=(y)/(x)` has the solutionA. `x=y(logx+C)`B. `y=x(logy+C)`C. `x=(y+C)logx`D. `y=(x+C)logy` |
|
Answer» Correct Answer - A We have, `(dy)/(dx)+(y^(2))/(x^(2))=(y)/(x)` Putting `y=vx` and `(dy)/(dx)=v+x(dv)/(dx)`, we get `v+x(dv)/(dx)+v^(2)=v rArr x(dv)/(dx)=-v^(2)rArr-(1)/(v^(2))dv=(1)/(x)dx` On integrating, we get `(1)/(v)=log x+C rArr x=y(logx+C)` |
|