InterviewSolution
Saved Bookmarks
| 1. |
The differential equation for which `y=a cos x+b sin x` is a solution isA. `(d^(2)y)/(dx^(2))+y=0`B. `(d^(2)y)/(dx^(2))-y=0`C. `(d^(2)y)/(dx^(2))+(a+b)y=0`D. `(d^(2)y)/(dx^(2))+(a-b)y=0` |
|
Answer» Given that, `y=acosx+bsinx` On differentiating both sides w.r.t. x, we get `" "(dy)/(dx)=-asinx+bcosx` Again, differentiating w.r.t. x, we get `" "(d^(2)y)/(dx^(2))=-asinx+bcosx` `rArr" "(d^(2)y)/(dx^(2))=-y` `rArr" "(d^(2)y)/(dx^(2))+y=0` |
|