1.

The differential equation of all non-horizontallines in a plane is(a)`( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q) (r)`(s)(b) `( t ) (u) (v)(( w ) (x) d^(( y )2( z ))( a a ) x)/( b b )(( c c ) d (dd) y^(( e e )2( f f ))( g g ))( h h ) (ii)=0( j j )`(kk)(c)`( d ) (e) (f)(( g ) dy)/( h )(( i ) dx)( j ) (k)=0( l )`(m) (d) `( n ) (o) (p)(( q ) dx)/( r )(( s ) dy)( t ) (u)=0( v )`(w)A. `(d^(2)y)/(dx^(2))`B. `(d^(2)x)/(dy^(2))=0`C. `(dy)/(dx)=0`D. `(dx)/(dy)=0`

Answer» Correct Answer - B
The general equation of all non-horizontal lines in xy-plane is `ax+by=1`, where `a ne 0`.
Now,
`ax+by=1`
`rArr" "a(dx)/(dy)+b=0" [Diff. w.r. to y]"`
`rArr" "a(d^(2)x)/(dy^(2))=0" [Diff. w.r. to y]"`
`rArr" "(d^(2)x)/(dy^(2))=0" "[because a ne 0]`
Hence, the required differential equation is `(d^(2)x)/(dy^(2))=0`


Discussion

No Comment Found

Related InterviewSolutions