InterviewSolution
Saved Bookmarks
| 1. |
The differential equation of family of curves of `y^(2)=4a(x+a)`isA. `y^(2)=4(dy)/(dx)((x+dy)/(dx))`B. `2y (dy)/(dx)=4a`C. `(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=0`D. `2x(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)-y=0` |
|
Answer» Given that, `y^(2)=4a(x+a)…(i)` On differentiating both sides w.r.t. x, we get `2y(dy)/(dx)=4a Rightarrow 2y(dy)/(dx)=4a` `Rightarrow y(dy)/(dx)=2a Rightarrow a=(1)/(2)y(dy)/(dx).........(ii)` On putting the value of a form Eq. (ii) in Eq. (i) we get `y^(2)=2y(dy)/(dx) (x+(1)/(s)y(dy)/(dx))` `Rightarrow y^(2)=2xy(dy)/(dx)+y^(2)((dy)/(dx))^(2)` `Rightarrow 2x(dy)/(dx)+y((dy)/(dx))^(2)-y=0` |
|