InterviewSolution
Saved Bookmarks
| 1. |
The differential equation of the family of curves y = p cos (ax) + q sin (ax), where p, q are arbitrary constants, isa. d2y/dx2 - a2y = 0b. d2y/dx2 - ay = 0c. d2y/dx2 + ay = 0d. d2y/dx2 + a2y = 0 |
|
Answer» Correct option d. d2y/dx2 + a2y = 0 Explanation: y = p cos ax + q sin ax ⇒ dy/dx = – p a sin ax + qa cos ax ⇒ d2y/dx2 = – p a2 cos ax – qa2 sin ax = –a2y ⇒ d2y/dx2 + a2y = 0 |
|