InterviewSolution
Saved Bookmarks
| 1. |
The differential equation `x(dy)/(dx) -y=x^3,` has the general solutionA. `y=x^(3)=2Cx`B. `2y-x^(3)=Cx`C. `2y+x^(2)=2Cx`D. `y+x^(2)=2Cx` |
|
Answer» Correct Answer - B We have, `(dy)/(dx)+(-(1)/(x))y=x^(2)` It is a linear differential equation with integrating factor `"I.F. "=e^(int-(1)/(x)dx)=e^(-logx)=(1)/(x)` Multiplying (i) by `(1)/(x)` and integrating, we get `(y)/(x)=(x^(2))/(2)+C or, 2y-x^(3)=2Cx` |
|