| 1. |
The digit in tens place of two digit number is more than its digit in the units place by 5 the sum of its digit is 1/8 of the number.find the number?? Std 10th |
Answer» Answer :72 Solution :Let the tens digit and the unit digit of the REQUIRED two digits number be x and y respectively . Thus , The required number = 10x + y Now , According to the question , The tens digit of the required number is 5 more than its unit digit . Thus , x = y + 5 ----------(1) Also , It is given that , The sum of both the digits of the number is ⅛ of the number . Thus , => x + y = ⅛ of (10x + y) => x + y = ⅛•(10x + y) => 8(x + y) = 10x + y => 8X + 8y = 10x + y => 8x + 8y - 10x - y = 0 => 7y - 2x = 0 ----------(2) Now , Putting x = y + 5 in EQ-(2) , we GET ; => 7y - 2x = 0 => 7y - 2(y + 5) = 0 => 7y - 2y - 10 = 0 => 5y - 10 = 0 => 5y = 10 => y = 10/5 => y = 2 Now , Putting y = 2 in eq-(1) , we get ; => x = y + 5 => x = 2 + 5 => x = 7 Hence ,The required number is 72 . |
|