InterviewSolution
Saved Bookmarks
| 1. |
The displacement of a partical as a function of time t is given by `s=alpha+betat+gammat^(2)+deltat^(4)`, where `alpha`,`beta`,`gamma` and `delta` are constants. Find the ratio of the initial velocity to the initial acceleration. |
|
Answer» First find the velocity and acceleration in terms of time t, then use t=0 to find the intial values. `s=alpha+betat+gammat^(2)+deltat^(4)` `v=(ds)/(dt)=0+beta.1+gamma.2t+delta.4t^(3)` `=beta+2gammat+4deltat^(3)` `a=(dv)/(dt)=0+2gamma.1+4delta.3t^(2)` `=2gamma+12deltat^(2)` At `t=0, v=beta, a=2gamma` `("Initial velocity")/("Initial acceleration")=beta/(2gamma)` |
|