

InterviewSolution
Saved Bookmarks
1. |
The domain of definition of the function`f(x)=sqrt(sin^(-1)(2x)+pi/6)`for real-valued `x`is`[-1/4,1/2]`(b) `[-1/2,1/2]`(c) `(-1/2,1/9)`(d) `[-1/4,1/4]` |
Answer» Correct Answer - `[-1//4,1//2]` We have `f(x)=sqrt(sin^(-1)(2x)+(pi)/(6))` We must have `sin^(-1)(2x) +(pi)/(6) ge 0` `implies sin^(-1)(2x) ge -(pi)/(6) " …(1) " ` But `-(pi)/(2) le sin^(-1)(2x) le (pi)/(2) " (2)" ` From (1) and (2), we have ` -(pi)/(2) le sin^(-1) (2x) le (pi)/(2)` `implies "sin"(-(pi)/(6)) le 2x le "sin"(pi)/(2)` `implies -(1)/(2) le 2x le 1` `implies -(1)/(4) le x le (1)/(2)` Hence, domain is `[-(1)/(4),(1)/(2)]` |
|