

InterviewSolution
Saved Bookmarks
1. |
The domain of the function f(x) is denoted by `D_(f)` |
Answer» Correct Answer - (A) `rarr` (s); (B) `rarr` (r); (C ) `rarr` (p); (D) `rarr` (q) Let `y=sqrt(3-x)+sin^(-1)((3-2x)/(5))` For y to be defined `3-xge0" on "-1le(3-2x)/(5)le1xle3" ... (i)"` `-5le3-2xle5` and `-1lexle4" ... (ii)"` From Eqs. (i) and (ii), we get `x in [-1, 3]` (B) Let `y = log_(10)` `{1-log_(10)(x^(2)-5x+16)}` for y to be defined `x^(2)-5x+16gt0and1-log_(10)(x^(2)-5x+16)gt0` `(x-(5)/(2))^(2)+(39)/(4)gt0 and log_(10)(x^(2)-5x+16)lt1` which is true, `AAx inR" ... (i)"` `impliesx^(2)-5x+16lt10` `implies x^(2)-5x+6lt0implies(x-3)(x-2)lt0` `implies 2ltxlt3" ... (ii)"` From Eqs. (i) and (ii), `x in(2, 3)` (C ) Let `y=cos^(-1).(2)/(2+sinx)`, for y to be defined `-1le(2)/(2+sinx)le1 {:[(because-1ltsinxle1),(1lt2+sinxle3)]:}` Multiplying by (2+sinx) `-(2+sinx)le2le2+sinx` `implies-2-sinxle2|2le2+sinx` `{:(implies.-sin x le 4),(implies.sinxge-4):}:|:{:(sinxge0),(2npilexle(2n+1)pi.ninz" ... (i)"):}` We know that sin `x in [-1, 1]` `therefore x in R" ... (ii)"` From Eqs. (i) and (ii), `x in [2kpi, (2k+1)pi]` Domain `underset(k in I)(uu)[2kpi, (2k+1pi)]` (D) `y=sqrt(sinx)+sqrt(16-x^(2))` for y to be defined `{:(sinxge0),(x in[2kpi,(2k+1)pi]",k" in"I ... (i)"):}:|:{:(16-x^(2)ge0),(-4lexle4" ... (ii)"):}` From Eqs. (i) and (ii), we get `x in [-4, -pi]uu[0, pi]` |
|