1.

The electric potential between a proton and an electron is given by V =V_0 In r/r_(0)" where "r_(0) is a constant. Asuming Bohr'a model to be applicable, write variation of, r_(n) with n, n being the principal quantum number: --

Answer»

`r_(N) alpha n`
`r_(n) alpha 1/n`
`r_(n) alpha n^(2)`
`r_(n) alpha 1/n^(2)`

Solution :`V=V_(0) log e r/r_(0)`
But `F=-(d V)/(dr)=(e V_(0))/(r)`
But `F=-(d V)/(dr)=(eV_(0))/(R)`
`RARR (mv^(2))/(r)=(e V_(0))/(r) (therefore F=(mv^2)/(r))`
`therefore v=sqrt((e V_(0))/(m))`
But `mv r_(n) =(NH)/(2pi)`
`rArr m^(2)v^(2)r_(n)^(2)=(n^(2)H^(2))/(4pi^(2))`
`m^(2) (e V_(0))/(m) .r_(n)^(2)=(n^(2)h^(2))/(4pi)`
`r_(n)^(2)=(n^(2)h^(2))/(4pi meV_(0)) rArr r_(n)^(2) alpha n^(2)`
`r_(n) alpha n`


Discussion

No Comment Found

Related InterviewSolutions