InterviewSolution
Saved Bookmarks
| 1. |
The elimination of θ from xcos θ - ysinθ = 2 and xsinθ + ycosθ = 4 will give:1. x2 - y2 = 202. 3x2 + y2 = 203. x2 + y2 = 204. 3x2 - y2 = 20 |
|
Answer» Correct Answer - Option 3 : x2 + y2 = 20 Given : xcosθ - ysinθ = 2 xsinθ + ycosθ = 4 Formula used: sin2θ + cos2θ = 1 (a + b)2 = a2 + b2 + 2ab Calculation: xcosθ - ysinθ = 2 On squaring we get, ⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) = 4 ….(i) xsinθ + ycosθ = 4 On squaring we get, ⇒ x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 16 ….(ii) On adding eqns (i) and (ii) ⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) + x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 4 + 16 ⇒ x2(cos2θ + sin2θ) + y2(sin2θ + cos2θ) = 20 ⇒ x2 + y2 = 20 ∴ The correct answer is x2 + y2 = 20
|
|