1.

The elimination of θ from xcos θ - ysinθ = 2 and xsinθ + ycosθ = 4 will give:1. x2 - y2 = 202. 3x2 + y2 = 203. x2 + y2 = 204. 3x2 - y2 = 20

Answer» Correct Answer - Option 3 : x2 + y2 = 20

Given : 

xcosθ - ysinθ = 2 

xsinθ + ycosθ = 4 

Formula used: 

sin2θ + cos2θ = 1

(a + b)2 = a2 + b2 + 2ab

Calculation: 

xcosθ - ysinθ = 2 

On squaring we get,

⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) = 4      ….(i)

xsinθ + ycosθ = 4 

On squaring we get,

⇒ x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 16      ….(ii)

On adding eqns (i) and (ii)

⇒ x2cos2θ + y2sin2θ – 2(xcosθ)(ysinθ) + x2sin2θ + y2cos2θ + 2(ycosθ)(xsinθ) = 4 + 16

⇒ x2(cos2θ + sin2θ) + y2(sin2θ + cos2θ) = 20

⇒ x2 + y2 = 20

∴ The correct answer is x2 + y2 = 20

 

 



Discussion

No Comment Found

Related InterviewSolutions