InterviewSolution
Saved Bookmarks
| 1. |
The equation logx2 16 + log2x64 = 3 has,(A) one irrational solution(B) no prime solution(C) two real solutions(D) one integral solution |
|
Answer» (A), (B), (C), (D) log x2 16 + log2x64 = 3 \(\therefore\frac{log16}{logx^2}+\frac{log64}{log2x}=3\) ∴ 4 log 2 [log x + log 2] + (6 log 2) (2 log x) = 3 (2 log x) (log 2 + log x) Let log 2 = a, log x = t. Then ∴ 4at + 4a2 + 12at = 6at + 6t2 ∴ 6t2– 10at – 4a2 = 0 ∴ 3t2 – 5at – 2a2 = 0 ∴ (3t + a) (t – 2a) = 0 ∴ t = \(-\frac13\)a, 2a ∴ log x = log(2)-1/3, log(22) ∴ x = 2-1/3, 4 ∴ x = \(\frac{1}{\sqrt[3]2},4\) |
|