1.

The equation `sin^4x-2cos^2x+a^2=0`can be solved if`-sqrt(3)lt=alt=sqrt(3)`(b) `sqrt(2)lt=alt=""sqrt(2)``-""1lt=alt=a`(d) none of theseA. `-sqrt(3) le a le sqrt(3)`B. `-sqrt(2) le a le sqrt(2)`C. `-1 le a le 1`D. none of these

Answer» Correct Answer - B
We have `sin^(4) x-2 cos^(2) x+a^(2)=0`
`:. a^(2)=2 cos^(2) x- sin^(4) x`
`=2-2 sin^(2) x-sin^(4) x`
`=3-(sin^(2) x+1)^(2)`
Now `0 le sin^(2) x le 1`
`:. 1 le sin^(2) x + 1 le 2`
`:. 1 le (sin^(2) x+1)^(2) le 4`
`:. -4 le -(sin^(2) x+1)^(2) le -1`
`:. -1 le 3 -(sin^(2) x+1)^(2) le 2`
`:. a^(2) le 2`
`:. -sqrt(2) le a le sqrt(2)`


Discussion

No Comment Found