1.

The Fibonacci sequence is defined by `1=a_1=a_2( and a)_n=a_(n-1)+a_(n-2),n >2`. Find `(a_(n+1))/(a_n),`for n = 1, 2, 3, 4, 5.

Answer» `because " "a_(1)=1=a_(2)`
`therefore " "a_(3)=a_(2)+a_(1)=1+1=2,`
`a_(4)=a_(3)+a_(2)=2+1=3`
`a_(5)=a_(4)+a_(3)=3+2=5`
and `a_(6)=a_(5)+a_(4)=5+3=8`
`therefore" "(a_(2))/(a_(1))=1,(a_3)/(a_2)=(2)/(1)=2,(a_4)/(a_3)=(3)/(2),(a_5)/(a_4)=(5)/(3)`and `(a_6)/(a_5)=(8)/(5)`


Discussion

No Comment Found

Related InterviewSolutions