InterviewSolution
Saved Bookmarks
| 1. |
The first order integrated rate equation isA. `k = (x)/(t)`B. `k = - ""(2.303)/(t) "log" (a)/(a-x)`C. `k = (1)/(t) "ln" (a)/(a-x)`D. `k =(1)/(t) (x)/(a(a-x))` |
|
Answer» Correct Answer - C For first order , rate = `(d[R])/(dt) = k[R]` or `(d[R])/([R]) = kdt " " … (i)` On integration Eq. (i) `int (d[R])/([R]) = k int dt` In [R] = `-kt + C " " … (ii)` At t = 0 , [R] = `[R_(0)]` [where , R = final concentration , ie , a - x and `R_(0)` is the initial concentration ie,a ] In `[R_(0)] = C` On putting the value of C in Eq. (ii) we get ln[R] = -kt + ln `[R_(0)]` `-kt ` = ln [R] - ln `[R_(0)]` kt = ln `[R_(0)] - `ln [R] or `k = (1)/(t)` ln `([R_(0)])/([R])` or `k = (1)/(t) "ln" (a)/(a-x)` |
|