1.

The first two terms of a geometric progression add up to 12. The sum of the third and fourth terms is 48. If the terms of the geometric progression are alternately positive and negative, then the first term is (a) – 4 (b) – 12 (c) 12 (d) 4

Answer»

(b) – 12

Let a and r be the first term and common ratio respectively of the given G.P.

Then a + ar = 12                  ...(i) 

ar2 + ar3 = 48                     ....(ii)

⇒ \(\frac{ar^2(1+r)}{a(1+r)}\) = \(\frac{48}{12}\)            (Dividing (ii) by (i)) 

⇒ r2 = 4 ⇒ r ± 2 ⇒ r = – 2 

as the terms of the G.P. are alternately positive and negative. 

Now a (1 + r) = 12 ⇒ a (1 – 2) = 12 ⇒ a = – 12.



Discussion

No Comment Found