InterviewSolution
Saved Bookmarks
| 1. |
The function `f(x)=cos^(-1)((2[|sinx|+|cosx|])/(sin^2x+2sinx+11/4))` is defined if x belongs to (where [.] represents the greatest integer function)A. `[0,(7pi)/(6)]`B. `[0,(pi)/(6)]`C. `[(11pi)/(6)]`D. `[pi,2pi]` |
|
Answer» Correct Answer - A::B::C `1le|sinx|+|cosx|lesqrt2` `therefore" "2[|sinx|+|cosx|]=2` `thereforef(x)` is defined if `sin^(2)x+2 sin x+(11)/(4)ge2` `"or "(sinx+1)^(2)ge(1)/(4)` `"or "sinx+1ge(1)/(2) or sin x+1le-(1)/(2)` `"or "sinx ge-(1)/(2) or sin le-(3)/(2)` (which is not true) |
|