InterviewSolution
Saved Bookmarks
| 1. |
The inner perimeter of a running track (shown in figure) is 400 m. The length of each of the straight portion is 90 m and the ends are semicircular. If the track is everywhere 14 m wide, find the area of the track. Also, find the length of the outer running track. |
|
Answer» Length of the interior curved protion `= (400 - 2 xx 90) m = 220 m` Each curved part = 110 m `pi r = 110` `r = (110)/(pi) = (110 xx 7)/(22) m = 35 m` `:.` Inner radius = 35 m `:.` Outer radius `= (35 + 14) m = 49 m` `:.` Area of the track `= 2 xx` Area of rectangles each of `90 m xx 14 m` + Area of (circular ring with `r_(1) = 49 m and r_(2) = 35 m`) `= 2(90 xx 14) + (22)/(7) xx [(49)^(2) - (35)^(2)]` `= 2520 m^(2) + (22)/(7) (49 + 35) (49 - 35) m^(2)` `= 2520 m^(2) + (22 xx 84 xx 14)/(7) m^(2)` `= 2520 m^(2) + 3694 m^(2) = 6216 m^(2)` Length of outer track `= (2 xx 90 + 2 xx (22)/(7) xx 49) m` `180 m + 308 m = 488 m` |
|