InterviewSolution
Saved Bookmarks
| 1. |
The integrating factor of the differential equation `(1-x^(2))(dy)/(dx)-xy=1`, isA. `-x`B. `(x)/(1x^(2))`C. `sqrt(1-x^(2))`D. `(1)/(2)log(1-x^(2))` |
|
Answer» Correct Answer - C We have, `(1-x^(2))(dy)/(dx)=xy-1rArr(dy)/(dx)-((x)/(1-x^(2)))y=(1)/(1-x^(2))` It is a linear differential equation with I.F. given by `"I.F. "=e^(-int(x)/(1-x^(2))dx)=e^((1)/(2)log(1-x^(2)))=sqrt(1-x^(2))` |
|