1.

The integrating factor of the differentialequation `(dy)/(dx)(x(log)_e x)+y=2(log)_e x`is given by(a)`( b ) x (c)`(d)(b) `( e ) (f) (g) e^(( h ) x (i))( j ) (k)`(l)(c) `( m ) (n) (o)(( p )log)_( q ) e (r) (s) x (t)`(u)(d) `( v ) (w) (x)(( y )log)_( z ) e (aa) (bb)(( c c )(( d d )log)_( e e ) e (ff) (gg) x)( h h )`(ii)A. xB. `e^(x)`C. `log_(e)x`D. `log_(e)(log_(e)x)`

Answer» Correct Answer - C
`therefore (dy)(dx)+y/(xlog_(e)x)=2/x`
`therefore` I.F. `=e^(int1/(xlog_(e)x)dx)`
`=e^(log_(e )(log_(e)x)`
`=log_(e)x`


Discussion

No Comment Found

Related InterviewSolutions