

InterviewSolution
Saved Bookmarks
1. |
The mean and variance of seven observations are 8 and 16 respectively. If five of these are 2,4,10,12,14, find the remaining two observations. |
Answer» Let the remaining two observations be x and y. Then, `"mean"=8rArr(2+4+10+12+14+x+y)/(7)=8` `rArr" "42+x+y=56` `rArr" "x+y=14." ...(i)"` Also, variance =16 `rArr" "(1)/(7)(2^(2)+4^(2)+10^(2)+12^(2)+14^(2)+x^(2)+y^(2))-8^(2)=16" "[because sigma^(2)=(Sigmax_(i)^(2))/(n)-(barx)^(2)]` `rArr" "(1)/(7)(460+x^(2)+y^(2))=80` `rArr" "460+x^(2)+y^(2)=560` `rArr" "x^(2)+y^(2)=100." ...(ii)"` `"Now, "(x+y)^(2)+(x-y)^(2)=2(x^(2)+y^(2))` `rArr" "(x-y)^(2)=2(x^(2)+y^(2))-(x+y)^(2)` `rArr" "(x-y)^(2)=(2xx100)-(14)^(2)=(200-196)=4` `rArr" "x-y=pm2.` `"Now, "x+y=14,x-y=2rArrx=8,y=6,` `x+y =14, x-y=-2rArrx=6,y=8.` Hence, the remainig two observations are 6 and 8. |
|