1.

The minimum and maximum value of 12 sin2θ +13 cos2θ  is1. 10 and 122. 13 and 153. 12 and 134. 9 and 11

Answer» Correct Answer - Option 3 : 12 and 13

Trigonometry identity used:

Sin2θ + cos2θ = 1

Calculation:

12 sin2θ + 13 cos2θ

= 12 sin2θ + 12 cos2θ + cos2θ

= 12 (sin2θ + cos2θ) + cos2θ

= 12 + cos2θ

For minimum value,

Minimum value of cosθ = –1

But cos2θ  ≥ 0, when θ  = 90°

So, cos0° = 1,

Then, required minimum value

= 12 + 0

= 12.

For the maximum value,

Maximum value of cosθ = 1

And cos2θ =1

Then, required maximum value,

= 12 + 1 = 13

The minimum and maximum values of 12 sin2θ +13 cos2θ are 12 and 13.



Discussion

No Comment Found

Related InterviewSolutions