InterviewSolution
Saved Bookmarks
| 1. |
The minimum and maximum value of 12 sin2θ +13 cos2θ is1. 10 and 122. 13 and 153. 12 and 134. 9 and 11 |
|
Answer» Correct Answer - Option 3 : 12 and 13 Trigonometry identity used: Sin2θ + cos2θ = 1 Calculation: 12 sin2θ + 13 cos2θ = 12 sin2θ + 12 cos2θ + cos2θ = 12 (sin2θ + cos2θ) + cos2θ = 12 + cos2θ For minimum value, Minimum value of cosθ = –1 But cos2θ ≥ 0, when θ = 90° So, cos0° = 1, Then, required minimum value = 12 + 0 = 12. For the maximum value, Maximum value of cosθ = 1 And cos2θ =1 Then, required maximum value, = 12 + 1 = 13 ∴The minimum and maximum values of 12 sin2θ +13 cos2θ are 12 and 13. |
|