1.

The nth term of an A.P. is given by (-4n + 15). Find the sum of first 20 terms of this A.P.

Answer»

Given: 

The nth term of an A.P. (-4n+15).

To find: the sum of first 20 terms of this A.P. 

Solution: We have, 

Tn = (-4n + 15) 

T1 = -4 + 15 = 11 

T2 =( -4 × 2 )+ 15 = 7

 T3 =( -4 × 3 ) + 15 = 3

Hence the A.P is 11,7,3,.........

The first term is 11 and the common difference is, d = T2 – T1 = 7 – 11 = -4 

We calculate the sum of terms of A.P by using the formula:Sn= \(\frac{n}{2}\)[2a + (n – 1) d] 

Substitute the known values to get the sum.

The sum of first 20 terms, S20 = \(\frac{20}{2}\)[(2 x 11) + (20 - 1)(-4)]

S20 = \(\frac{20}{2}[(22 + (19)(-4)]\)

S20 = 10 (22 – 76) 

S20 = 10(-54)

S20 = -540



Discussion

No Comment Found