

InterviewSolution
Saved Bookmarks
1. |
The number of `2xx2` matrices `A`, that are there with the elements as real numbers satisfying `A+A^(T)=I` and `A A^(T)=I` isA. zeroB. oneC. twoD. infinite |
Answer» Correct Answer - C `(c )` `A=({:(a,b),(c,d):})` `A+A^(T)=I` `implies({:(a,b),(c,d):})+({:(a,c),(b,d):})=({:(1,0),(0,1):})` `implies2a=1`, `b+c=0`, `2d=1` `impliesa=(1)/(2)`, `c=-b`, `d=(1)/(2)` `impliesA=({:((1)/(2),b),(-b,(1)/(2)):})` Now `AA^(T)=I` `implies({:((1)/(2),b),(-b,(1)/(2)):})({:((1)/(2),-b),(b,(1)/(2)):})=I` `implies({:((1)/(4)+b^(2),0),(0,b^(2)+(1)/(4)):})=({:(1,0),(0,1):})` `impliesb^(2)+(1)/(4)=1impliesb=+-(sqrt(3))/(2)` `:.A=({:((1)/(2),(sqrt(3))/(2)),(-(sqrt(3))/(2),(1)/(2)):})and({:((1)/(2),-(sqrt(3))/(2)),((sqrt(3))/(2),(1)/(2)):})` No. of matrices `=2` |
|