1.

The number of distinct terms in the expansion of is `(x^(3)+(1)/(x^(3))+1)^(200)` isA. `201`B. `400`C. `401`D. `500`

Answer» Correct Answer - C
`(c )` `(1+x^(3)+(1)/(x^(3)))^(200)`
`=1+^(200)C_(1)(x^(3)+(1)/(x^(3)))+^(200)C_(2)(x^(3)+(1)/(x^(3)))^(2).......^(200)C_(200)(x^(3)+(1)/(x^(3)))^(200)`
The `R.H.S` is of the form
`k_(0)+k_(1)x^(3)+k_(2)(x^(3))^(2)+....k_(200)(x^(3))^(200)+(l_(1))/(x^(3))+(l_(2))/((x^(3))^(2))+....(l_(200))/((x^(3))^(200))`
where `k_(0),k_(1),.....,l_(1),l_(2),....` are all real constants
`:.` Number of terms `=1+200+200=401`


Discussion

No Comment Found

Related InterviewSolutions