

InterviewSolution
Saved Bookmarks
1. |
The number of real roots of the equation sin4 θ – 2 sin2 θ – 1 = 0 in the interval (0, 2π) is (a) 0 (b) 1 (c) 2 (d) 4 |
Answer» Answer : (a) 0 sin4 θ – 2 sin2 θ – 1 = 0 ⇒ (sin2 θ)2 – 2 sin2 θ – 1 = 0 ⇒ sin2 θ = \( {2 \,\pm \sqrt{4-4\times 1 \times (-1)} \over 2\times 1}\) \( = {2\, \pm\, \sqrt{8} \over 2}\) = \( {2\, \pm \,2\sqrt{2} \over 2}\) = 1- \( \sqrt{2} \) or 1 + \( \sqrt{2} \) sin2 θ = 1 – \( \sqrt{2} \) is inadmissible as it is not real. ∵ –1 ≤ sin θ ≤ 1 ⇒ 0 ≤ sin2 θ ≤ 1 ⇒ sin2 θ = 1 + \( \sqrt{2} \) is not possible. Hence the given equation has no real root. |
|