1.

The number of real roots of the equation sin4 θ – 2 sin2 θ – 1 = 0 in the interval (0, 2π) is (a) 0 (b) 1 (c) 2 (d) 4

Answer»

Answer :  (a) 0

sin4 θ – 2 sin2 θ – 1 = 0 

⇒ (sin2 θ)2 – 2 sin2 θ – 1 = 0 

⇒ sin2 θ = \( {2 \,\pm \sqrt{4-4\times 1 \times (-1)} \over 2\times 1}\) 

\( = {2\, \pm\, \sqrt{8} \over 2}\) = \( {2\, \pm \,2\sqrt{2} \over 2}\) 

= 1- \( \sqrt{2} \)  or 1 + \( \sqrt{2} \) 

sin2 θ = 1 – \( \sqrt{2} \) is inadmissible as it is not real. 

∵ –1 ≤ sin θ ≤ 1 

⇒ 0 ≤ sin2 θ ≤ 1 

⇒ sin2 θ = 1 + \( \sqrt{2} \) is not possible. 

Hence the given equation has no real root.



Discussion

No Comment Found