InterviewSolution
Saved Bookmarks
| 1. |
The number of roots of the equation `sin(2x+pi/18) cos(2x-pi/9)=-1/4` in `[0, 2pi]` isA. 2B. 4C. 6D. 8 |
|
Answer» Correct Answer - B `2sin(2x+(pi)/(18)).cos(2x-(2pi)/(18))=(-1)/(2)` `therefore 2 sin (2x + 10^(@))cos (2x-20^(@))=(-1)/(2)` `therefore sin (4x-10^(@))+sin 30^(@)=(-1)/(2)` `therefore sin (4x-10^(@))=-1=sin 270^(@)` Now period of `sin (4x - 10^(@))` is `pi//2` For `x in (0, pi//2)` `therefore 4x = 280^(@)` `therefore x = 70^(@)` `therefore` for x in `[0, 2pi]`, there are four solutions |
|