 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | The number of solutions of the equation `|2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1` in `[0, pi]` isA. 2B. 3C. 4D. 5 | 
| Answer» Correct Answer - B `|2 sin x -sqrt(3)|^()=1` Case I : `2 cos^(2) x-3 cos x+1 =0` `cos x=1/2, 1` `x=0, pi/3` But at `x=pi/3, L.H.S. =0^(@)` `:. x=pi/3` (rejected) `:. x=0` is a solution Case II : `2 sin x-sqrt(3) =1, -1` `:. sin x=(sqrt(3)+1)/2, (sqrt(3)-1)/2` `sin x=(sqrt(3)-1)/2` `:.` x has 2 values in `[0, pi]` `:.` Total number of solutons `=2+1=3` | |