

InterviewSolution
Saved Bookmarks
1. |
The number of solutions of the equation `sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5)` is |
Answer» Correct Answer - 2 We have `sqrt(x^(2))-sqrt((x-1)^(2))+sqrt((x-2)^(2))=sqrt(5)` `implies|x|-|x-1|+|x=2|=sqrt(5)` Case I If `xlt0` then `-x+(x-1)-(x-2)=sqrt(5)` `x=1-sqrt(5)` Case II I `0lexlt1` then `x+(x-1)-(x-2)=sqrt(5)` `impliesx=sqrt(5)-1` which is not possible. Case III If `1lexlt2`, then `x-(x-1)-(x-2)=sqrt(5)` `impliesx=3-sqrt(5)` which is not possible. Case IV If `xgt2`, then `x-(x-1)+(x-2)=sqrt(5)` ltbr `impliesx=1+sqrt(5)` Hence number of solutiions is 2. |
|