

InterviewSolution
Saved Bookmarks
1. |
The number of solutions of `|[x]-2x|=4, "where" [x]]` is the greatest integer less than or equal to x, isA. infiniteB. 4C. 3D. 2 |
Answer» Correct Answer - A We have `|[x]-2x|=4` `implies|[x]-2([x]+{x})|=4` `implies|[x]+2{x}|=4` which is possible only when `2{x}=0,1` If `{x}=0 then `[x]=+-4` and then `x=-4,4` and if `{x}=1/2`, then `[x]+1=+-4` `implies[x]=3,-5` `:.x=3+1/2` and `-5+1/2` `impliesx=7/2,-9/2impliesx=-4, -9/2,7/2,4` |
|